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Abstract
We prove a measure-theoretic identity that underlies all transient fluctuation
theorems (TFTs) for entropy production and dissipated work in inhomogeneous
deterministic and stochastic processes, including those of Evans and Searles,
Crooks and Seifert. The identity is used to deduce a tautological physical
interpretation of TFTs in terms of the arrow of time, and its generality reveals
that the self-inverse nature of the various trajectory and process transformations
historically relied upon to prove TFTs, while necessary for these theorems from
a physical standpoint, it is, however, not necessary from a mathematical one.
The moment generating functions of thermodynamic variables appearing in the
identity are shown to converge in general only in a vertical strip in the complex
plane, with the consequence that a TFT that holds over arbitrary timescales may
fail to give rise to an asymptotic fluctuation theorem for any possible speed
of the corresponding large deviation principle. The case of strongly biased
birth–death chains is presented to illustrate this phenomenon. We also discuss
insights obtained from our measure-theoretic formalism into the results of Saha
et al on the breakdown of TFTs for driven Brownian particles.

PACS numbers: 02.50.Ey, 05.70.Ln

1. Introduction

Fluctuation theorems have drawn a significant amount of research attention since their
discovery over 15 years ago [6, 9], due to their apparent connection to irreversibility
in nonequilibrium processes, whereas the second law states that the expected value of
thermodynamic quantities, such as entropy production and dissipated work, must be
nonnegative; these theorems reveal a symmetry in the actual probability distributions of
these quantities, the nonnegative expectation of which is merely one consequence. Transient
fluctuation theorems (TFTs), which provide concrete probabilities of second law violations
in systems observed at finite length and time scales, have even been credited [31] as the
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resolution of Loschmidt’s paradox: how microscopically reversible dynamics can give rise to
macroscopically irreversible phenomena.

In this paper we show that, beyond their known connection to the second law, TFTs in fact
possess a tautological physical interpretation in terms of the arrow of time. A consequence of
this is that Loschmidt’s paradox, historically approached as a dynamics problem, can instead be
recast as one of mathematical representation. This result rests on the derivation of a measure-
theoretic identity that underlies all TFTs for entropy production and dissipated work, but not,
notably, heat dissipation—the time-extensive current part of entropy production. In particular,
we will see that entropy production and dissipated work satisfy the identity (and, hence,
a TFT) solely because of their representation as logarithmic Radon–Nikodym derivatives,
revealing that the self-inverse nature of the protocol [3, 14], trajectory [22], driving field [24]
and process adjoint [5, 11] transformations that has previously been relied upon to prove
TFTs, while necessary for these theorems from a physical standpoint, is not necessary from
a mathematical one. The identity underlying TFTs, in fact, permits the general noninvolutive
process and trajectory transformations that are unrelated to the irreversibility of the underlying
process.

As an example of the generality we claim for TFTs, consider a physical system
represented in reduced coordinates by a continuous time Markov chain on the finite state
space {1, 2, . . . , N}, satisfying local detailed balance and driven by time-dependent, positive
transition rates kij : [−t, t] → (0,∞). Suppose further that the system is initially prepared
at time −t in an equilibrium distribution that satisfies strict detailed balance with respect to
the rates kij (−t). It is a well-known result [3, 11] that the TFT relation f (x)/f B(−x) = ex

then holds between the probability density f of the dissipated work of this process (work
done on the system that is not stored as free energy but released as heat) and the density f B

of the dissipated work of the corresponding backward process, in which the sample paths
and transition rates have been time-reversed. Surprisingly, however, the exactly same relation
holds when the transition rates of the backward process are replaced by an arbitrary driving
protocol k′

ij : [−t, t] → (0,∞) and the path-reversal transformation is replaced by one
which dices up a path according to an arbitrary finite partition and rearranges it, preserving
right-continuity. While the first TFT appears to be related to the irreversibility of the original
process, the second one clearly is not.

Several advances have already been made in the pursuit of a generalized, or universal,
TFT. In a sweeping series of papers, Maes and collaborators proved a moment generating
function (MGF) symmetry for the entropy production of general classes of stochastically
[20–22, 24, 25] and deterministically [21, 23] modeled homogeneous processes, in which
entropy production was identified as the source term for time-reversal breaking in the process’
action functional and found to equal the logarithmic Radon–Nikodym derivative of the process’
path measure with respect to itself, composed with a path-reversal transformation. Ge and Jiang
later rigorously proved the corresponding distributional form of this symmetry [10], which is
the one most often found in the applications and experimental studies of TFTs (see e.g. [6, 17,
18, 36]). The distributional form of the symmetry was generalized in a nonrigorous fashion by
Crooks [3] to inhomogeneous stochastic processes satisfying local detailed balance [16, 19]
via the introduction of a protocol-reversed process, and was generalized by Jarzynski [14] to
the case of inhomogeneous Hamiltonian systems connected to multiple thermal reservoirs. In
their review paper, Harris and Schütz [11] generalized both forms of the TFT to the case of
inhomogeneous Markov chains using a general functional on the Markov chain path space that
consists of a current and boundary part [30], which is able to represent various thermodynamic
quantities depending on the choice of the latter. This flexibility allowed them to recreate a
Markov chain version of many of the existing TFTs in the literature.
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The TFT identity we prove in this paper builds off and extends all of these results and
subsumes all integral and transient fluctuation theorems proven to date, including those of
Evans and Searles [7, 29] and Seifert [30]. Like the existing TFTs, it can be expressed
in both distributional and MGF form. It holds for the entropy production and dissipated
work of all inhomogeneous deterministic and stochastic processes satisfying local detailed
balance, including processes for which the distributions of these thermodynamic quantities
are neither discrete nor continuous with respect to Lebesgue measure. From the measure-
theoretic formalism we use to prove the identity; however, it is clear that it does not in general
hold for the heat dissipated by a process, a fact observed by van Zon and Cohen [34] in the
context of driven Brownian particles. Similar reasoning yields intuition into some of the more
recent results of Saha et al [28].

An additional result that follows from our analysis is that the MGFs of thermodynamic
variables appearing in TFTs, presumed by previous studies to exist everywhere, in fact converge
in general only on the vertical strip −1 � Re(λ) � 0 in the complex plane. As we discuss
in section 4, the failure of an MGF to converge in a neighborhood of the origin rules out the
possibility of a large deviation principle for the associated variable, regardless of the speed, or
time-scaling, used in its formulation. The implication is that thermodynamic quantities may
satisfy a TFT over arbitrary timescales, and yet not satisfy an asymptotic fluctuation theorem
(AFT), complementing our previous results on the breakdown of AFTs for even continuous
and bounded driving protocols [13]. Note that this type of AFT breakdown is different from
those considered by van Zon and Cohen [34], Baiesi et al [1] and Rakos and Harris [27], in
which the time-averaged heat dissipation of a process satisfies a large deviation principle with
linear speed, but whose rate function exhibits distinct, ‘extended’ fluctuation symmetries over
different regions of its domain.

The rest of the paper is organized as follows. In section 2 we present our abstract
formulation of the TFT identity, beginning with the definition of logarithmic Radon–Nikodym
derivatives SP and SQ, which take the place of Harris and Schütz’s generalized path functionals.
Both forms of the identity as well as a mutual implication are then proved for these quantities,
paying careful attention to the domain of convergence of the MGFs. In section 3 we identify SP

(resp. SQ) as either the entropy production or dissipated work of the forward (resp. backward)
version of a process, depending on the choice of its boundary term, confirming that these
thermodynamic quantities satisfy the TFT identity solely by virtue of their representation
as a logarithmic derivative. This is followed by a discussion of the tautological physical
interpretation of TFTs for homogeneous and inhomogeneous processes. In section 4 we
consider the breakdown of AFTs due to the divergence of MGFs, illustrating with the example
of strongly biased birth–death chains. Section 5 concludes with summary remarks.

2. Abstract definitions and results

Consider a pair of (nearly) arbitrary probability spaces (�,F, P ) and (S,S,Q). While the
theorems we will prove are entirely general, making no assumptions about the structure of
(�,F) or (S,S), we will always have in mind the case in which (�,F) = (S,S) and
elements ω ∈ � are spacetime trajectories of some deterministic or stochastic process. In
this scenario, P will play the role of the forward process measure and Q the protocol-reversed
process measure, in which any inhomogeneities driving the forward process have been time-
reversed. We assume the existence of a bimeasurable transformation ϕ : � → S between
the two sample spaces (i.e. ϕ and ϕ−1 are both measurable functions), whose action on
ω ∈ � will be denoted by ϕω and is defined on sets A ⊂ � by ϕA = {ϕω : ω ∈ A}
and measures μ by ϕμ(A) = μ(ϕ(A)). Our central objects of interest will be the random
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variables SP = log dP/d(ϕQ) and SQ = log dQ/d(ϕ−1P), which generalize both entropy
production and dissipated work under the forward and backward process, respectively. The
precise connection between these variables and the physical quantities they represent depends
on the initial distributions we assign to the forward and backward process measures, and will
be addressed in section 3.

Recall that we say a probability measure μ is absolutely continuous with respect to another
probability measure ν, and write μ � ν, if ν(A) = 0 implies μ(A) = 0 for all events A.
We say that two such measures are equivalent, and write μ ∼ ν, when the two are mutually
absolutely continuous. When μ and ν are path measures, as is the case in this paper, this
means that the two measures put positive probability on the same set of paths. We begin
this section by introducing a lemma that demonstrates how composition with bimeasurable
transformations preserves the absolute continuity of measures and affects the corresponding
Radon–Nikodym derivative, which plays the role of a Jacobian between the two measures.
The lemma will be an important symbolic tool in the theorems to follow because, loosely
speaking, it allows us to replace a ϕ in front of Q with a ϕ−1 in front of P, and vice versa.
Note that statement (c) is a generalization of lemma 2.1 in [10].

Lemma 2.1. Given the definitions above, the following three statements hold:

(a) P � ϕQ 	⇒ ϕ−1P � Q (1)

(b) P ∼ ϕQ ⇐⇒ ϕ−1P ∼ Q (2)

(c) P � ϕQ 	⇒ dP

d(ϕQ)
(ϕ−1ω) = d(ϕ−1P)

dQ
(ω), Q−a.s. (3)

Proof. Let A ∈ S in what follows. If P � ϕQ, then Q(A) = ϕQ(ϕ−1A) = 0 	⇒
P(ϕ−1A) = 0 	⇒ ϕ−1P(A) = 0. This proves (a). Now taking ϕQ � P , ϕ−1P(A) =
P(ϕ−1A) = 0 	⇒ Q(A) = ϕQ(ϕ−1A) = 0, implying Q � ϕ−1P , and hence the forward
implication of (b). Similar arguments yield the reverse implication. Finally, assuming
P � ϕQ, since dP/d(ϕQ(ϕ−1 ·)) is Q-measurable,∫

A

dP

d(ϕQ)
(ϕ−1ω) dQ(ω) =

∫
ϕ−1A

dP

d(ϕQ)
(ω′) dQ(ϕω′) =

∫
ϕ−1A

dP(ω′),

which guarantees the existence of the left-hand integral. We further have

P(ϕ−1A) = ϕ−1P(A) =
∫

A

d(ϕ−1P)

dQ
(ω) dQ(ω),

where the second equality follows from (a). By the uniqueness of the Radon–Nikodym
derivative up to sets of measure zero, the result follows. �

We now prove our first main result, the MGF form of our TFT identity, which generalizes
the MGF symmetries of Maes et al and Harris and Schütz. Note the mutual independence
of the two measures and ϕ: neither the processes themselves nor the transformation between
them needs to be related beyond a mutual absolute continuity assumption for the symmetry
to hold. This is in contrast to the existing results for inhomogeneous processes, for which the
backward process Q is defined directly in terms of the original process P and path-reversal is
often not replaceable by a more general transformation. The fact that ϕ is merely assumed to
be bimeasurable is itself a new result, in particular, since all existing proofs of TFTs rely on
the involutive, or self-inverse, nature of time reversal.
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Theorem 2.2 (MGF symmetry). Given probability spaces (�,F, P ) and (S,S,Q) with a
bimeasurable transformation ϕ : � → S between them such that P ∼ ϕQ,

EP (eλSP ) = EQ(e−(1+λ)SQ) for −1 � Re(λ) � 0. (4)

Proof. We first show the existence of the generating functions. Expanding out their
definitions,

|EP (eλSP )| =
∣∣∣∣∣
∫

�

(
dP

d(ϕQ)
(ω)

)λ

dP(ω)

∣∣∣∣∣
�

∫
�

(
dP

d(ϕQ)
(ω)

)Re(λ)

dP(ω) (5)

and

|EQ(e−(1+λ)SQ)| =
∣∣∣∣∣
∫

S

(
d(ϕ−1P)

dQ
(ω)

)1+λ

dQ(ω)

∣∣∣∣∣
�

∫
S

(
d(ϕ−1P)

dQ
(ω)

)1+Re(λ)

dQ(ω) (6)

by Jensen’s inequality, where the derivative in (6) is justified by (1). Recall that by the finiteness
of the measures P and Q, the spaces Lp(P ) and Lp(Q) have the property that Lp2 ⊂ Lp1 for
0 � p1 � p2. Noting that d(ϕQ)/dP ∈ L1(P ), we therefore have that d(ϕQ)/dP ∈ Lp(P )

for p ∈ [0, 1], or by the equivalence of P and ϕQ, dP/d(ϕQ) ∈ LRe(λ)(P ) for Re(λ) ∈ [−1, 0].
Similarly, d(ϕ−1P)/dQ ∈ Lp(Q) for p ∈ [0, 1], and so d(ϕ−1P)/dQ ∈ L1+Re(λ)(Q) for
Re(λ) ∈ [−1, 0]. This gives the convergence of both MGFs for Re(λ) ∈ [−1, 0]. For λ in this
domain,

EP (eλSP ) =
∫

�

(
dP

d(ϕQ)
(ω)

)λ

dP(ω)

=
∫

�

(
dP

d(ϕQ)
(ω)

)λ dP

d(ϕQ)
(ω) d(ϕQ)(ω)

=
∫

�

(
dP

d(ϕQ)
(ω)

)1+λ

dQ(ϕω)

=
∫

S

(
dP

d(ϕQ)
(ϕ−1ω′)

)1+λ

dQ(ω′)

=
∫

S

(
d(ϕ−1P)

dQ
(ω′)

)1+λ

dQ(ω′)

= EQ(e−(1+λ)SQ), (7)

where the final two equalities follow from (3) and then (2). �

The distributional form of the TFT identity is the one most often cited in applications
and experimental studies of fluctuation theorems. The existing versions of it require the
distributions of thermodynamic variables (our SP and SQ) to be discrete or continuous with
respect to the Lebesgue measure, but in our generalization below we relax this assumption
to allow for more general processes whose distributions of these quantities may be more
complicated (e.g. singularly continuous, reflecting an underlying fractal process). To state it,
we define dF and dG to be the Lebesgue–Stieltjes measures corresponding to the distribution
functions F(x) = P(SP � x) and G(x) = Q(−SQ � x), respectively.
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Theorem 2.3 (Distributional symmetry). Under the conditions of theorem 2.2,

dF ∼ dG and
dF

dG
(x) = ex. (8)

Proof. We first note that we may represent these measures as dF = dP ◦ S −1
P and

dG = dQ ◦ (−SQ)−1. Given a Borel set A ⊂ R, invoking the lemmas as before yields∫
A

dF(x) = P(SP ∈ A)

= P

{
ω ∈ � : log

dP

d(ϕQ)
(ω) ∈ A

}

= ϕ−1P

{
ω′ ∈ S : log

dP

d(ϕQ)
(ϕ−1ω′) ∈ A

}

= ϕ−1P

{
ω′ ∈ S : log

d(ϕ−1P)

dQ
(ω′) ∈ A

}
,

where in the final equality we have used ϕ−1P ∼ Q to justify that (3) holds (ϕ−1P)−a.s. By
(2), the last expression equals

ϕ−1P(−SQ ∈ A) =
∫

−SQ∈A

d(ϕ−1P)

dQ
(ω) dQ(ω) =

∫
−SQ∈A

e−SQ(ω) dQ(ω)

=
∫

A

ex dQ((−SQ)−1(x)) =
∫

A

ex dG(x).

We therefore conclude dF � dG and dF/dG = ex . By finiteness and strict positivity of
the Radon–Nikodym derivative, however, it immediately follows that dG � dF , and so
dG ∼ dF . �

Corollary 2.4. When SP and SQ both have continuous or discrete distributions under P and
Q, respectively, then under the conditions of theorem 1,

P(SP = x) = ex Q(SQ = −x). (9)

Here P(SP = x) and Q(SQ = −x) denote densities in the case of continuous distributions
and probability mass functions in the case of discrete distributions.

It was argued informally in [11] that the MGF form of the identity implies the distributional
form. We rigorously prove this statement here, as well as its converse, when the real part of λ

is restricted to [−1, 0]. This is not an a priori obvious fact, since classical statements of the
uniqueness of MGFs require them to be defined in a neighborhood of the origin. We will see
in section 4 that this domain of convergence cannot, in general, be extended.

Theorem 2.5 (Equivalence of the MGF and distributional symmetries).

dF ∼ dG and
dF

dG
(x) = ex

holds if and only if

EP (eλSP ) = EQ(e−(1+λ)SQ) for −1 � Re(λ) � 0.

This statement is not true if the domain of λ is extended.
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Proof. Beginning with the reverse implication, we saw in the proof of (4) that EP (eλSP ) and
EQ(e−(1+λ)SQ) exist for −1 � Re(λ) � 0. For such values of λ,∫

R
eλx dF(x) = EP (eλSP )

= EQ(e−(1+λ)SQ)

=
∫

R
e(1+λ)x dG(x)

=
∫

R
eλx ex dG(x). (10)

We would like to identify the measures dF and exdG, as this equality holds for a continuum
of λ values. To do so, we begin by defining λ′ = λ + 1/2, dμ = e−x/2 dF and dν = ex/2 dG.
Then, by (10), f (λ′) = ∫

R eλ′x dμ(x) and g(λ′) = ∫
R eλ′x dν(x) exist and are equal in the

closed strip −1/2 � Re(λ′) � 1/2. This domain contains the imaginary axis, on which
f (−λ′) and g(−λ′) are the characteristic functions of μ and ν, respectively. As characteristic
functions uniquely determine their measures [4], we have μ = ν. The strict positivity of the
exponentials in the definition of μ and ν then implies that dF ∼ dG, with dF/dG = ex . The
forward implication of the theorem is trivial by rearranging the equalities in (10), given the
existence of the generating functions for Re(λ) ∈ [−1, 0].

For the proof of why the mutual implication in the theorem does not remain valid if the
domain of λ is extended, we refer the reader to section 4.2, in which we discuss the example
of a strongly biased birth–death chain run from time 0 to t. The transition rates of the process
are defined such that the forward measure P and backward measure ϕQ of the process are
equivalent, and so by theorem 2.2, dF ∼ dG with dF/dG = ex . However, the MGF of SP is
shown to diverge for Re(λ) > 0, which implies that, by equality (7), the MGF of SQ diverges
for Re(λ) < −1.

3. Application to deterministic and stochastic processes

3.1. Forward and backward processes

Having proved general results for the abstract quantities SP and SQ, our goal is now to connect
them directly to the entropy production and dissipated work of deterministic and stochastic
processes, in order to confirm that our TFT identity does indeed subsume the most general
TFTs in the physics literature. To begin with, we must identify the building blocks of these
quantities, the measures P and Q and the transformation ϕ, as well as the measurable spaces
(�,F) and (S,S) on which they are defined.

Due to the generality of the class of processes we wish to consider that our definitions
will be open-ended. We take (�,F) = (S,S) to be a measurable space of functions
ω from [−t, t] to a state space (�,B), in which the path space � may be, for example,
C([−t, t], �), D([−t, t], �) (the Skorokhod space of right-continuous paths with left limits)
or a Riemannian manifold, depending on the underlying dynamics. The measure P ≡ P[−t,t]

governs the forward (original) process, which in general depends upon a spacetime-dependent
protocol λ(x, s) (x ∈ � and −t � s � t), and Q ≡ P −

[−t,t] then governs the process in
which the protocol has been time-reversed. We take ϕ ≡ r to be an appropriately defined
path-reversal involution (i.e. r−1 = r), which may, for example, need to preserve right-
continuity of paths or reverse the momentum coordinates of a Hamiltonian state space. The
minimal requirement that this transformation be bijective between the supports of the measures

7
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P[−t,t] and P −
[−t,t] is at times called ‘dynamic reversibility’ [22] and ‘microscopic reversibility’

[31].
The composition P B

[−t,t] ≡ rP −
[−t,t] we call the backward path measure, and may be

interpreted as follows. For a subset A ⊂ �, as P[−t,t](A) is the probability of one of the
spacetime curves in A being realized in a universe in which time runs forward from −t to
t, P B

[−t,t](A) is the probability of one of those curves being realized in a universe in which
time runs backward from t to −t . (For this reason we refer to ωt as the initial state of the
backward process, and ω−t the final state.) This is in contrast to the case of time-symmetric
protocols (including, particularly, time-independent ones), in which P B

[−t,t](A) = rP[−t,t](A)

becomes simply the probability of observing the reverse of some ω ∈ A as time moves in the
usual forward direction. Equality between P[−t,t] and rP[−t,t] in the homogeneous case is how
macroscopic reversibility is usually defined. Note that microscopic reversibility amounts to
equivalence between the measures P[−t,t] and P B

[−t,t].
It has been well established that when local detailed balance is satisfied, the entropy

production and dissipated work of inhomogeneous Markov chains [11] and the entropy
production of homogeneous diffusions [15, 21, 33] equal the logarithmic Radon–Nikodym
derivative of their forward path measure with respect to their backward path measure, with
suitably chosen initial distributions. Our goal here is to argue that this representation is
universal and well defined for the dissipated work and entropy production of general stochastic
and deterministic processes satisfying local detailed balance.

What distinguishes entropy production, dissipated work and dissipated heat in
deterministic and stochastic processes are the initial distributions for the forward and backward
path measures. This was first demonstrated in the case of Langevin processes [30], and then
later for Markov chains [11]. In order to define these quantities for the more general classes
of processes to follow, we adopt the following terminology. Let μ(·, s) = P[−t,t](Xs ∈ ·)
denote the law of the forward process and μB(·, s) = P B

[−t,t](Xs ∈ ·) the law of the backward
process for s ∈ [−t, t], where Xs(ω) = ωs is the coordinate projection from � onto �.
These measures must both be either continuous densities or discrete distributions ∀ s in order
for the system entropy log μ(Xs(ω), s) to be a well-defined quantity, and may therefore
be obtained by solving Kolmogorov forward equations. Microscopic reversibility further
implies that they have the same support, a condition sometime called ergodic consistency
[7, 31]. For processes possessing a Hamiltonian H(x, s) = Hλ(x,s)(x) on their state space, let
μ∗(dx, s) = exp[−βH(x, s)] dx/Z(s) denote the Gibbs measure corresponding to equilibrium
when the protocol is held fixed in time at λ(·, s), where β denotes a possibly non-physical
inverse temperature of a connected thermal reservoir and Z(s) = Zλ(·,s) the partition function
corresponding to H(·, s).

3.2. Entropy production

The first claim we make is that SP = log dP[−t,t]
/

dP B
[−t,t] equals the entropy production

S(−t, t) of the forward process accumulated from time −t to t when local detailed balance is
satisfied and we impose the boundary condition

(BC1) μB(·, t) = μ(·, t), (11)

that is, when the forward and backward laws agree at the final time t. Indeed, this was first
argued in [3] for general stochastic processes, proved later in the context of inhomogeneous
Markov chains [11], and is consistent with later measure-theoretic [15, 21, 33] and Onsager–
Machlup [22] analyses of homogeneous diffusions.

The argument for general Markov processes goes as follows. Coarse-graining the state
space � of the process into discrete states i ∈ Z, local detailed balance implies that for all
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times s ∈ [−t, t],

p(i, j, s)

p(j, i, s)
= eβ	Q(s), (12)

where p(i, j, s) is the rate of transitioning from i to j at time s and −	Q(s) is the heat
which must be imported from a reservoir at inverse temperature β for the system to make
this transition. For systems with a Hamiltonian, −	Q(s) = H(j, s) − H(i, s) + 	W(s),
where 	W(s) is the work that must be done against a nonconservative external force, such as
an electric field in the presence of periodic boundary conditions [16] to make the transition
happen. In the absence of nonconservative forces, 	W(s) vanishes and (12) reduces to strict
detailed balance with respect to H(·, s). For systems without a Hamiltonian, for whom a
thermodynamic description is simply an idealization, 	Q(s) has no meaning by itself, but
β	Q(s) represents the entropy lost by the system as a result of the transition. This is analogous
to phase space contraction in dissipative dynamical systems, discussed below.

Multiplying terms of the form (12) for every transition made from −t to t along a trajectory
ω (in addition to exponential holding time factors on top and bottom that cancel), we find that
the net heat Q(−t, t) exported over the entire trajectory satisfies

Q(−t, t) = β−1 log
P[−t,t](ω|X−t (ω))

P B
[−t,t](ω|Xt(ω))

, (13)

where we have conditioned the forward and backward measures on the initial and final state
of the trajectory, respectively. Adding the net change in entropy of the system from −t to t

	S = log
μ(X−t (ω),−t)

μ(Xt(ω), t)

and using BC1, we find that the total entropy production

S(−t, t) = βQ(−t, t) + 	S = log
dP[−t,t]

dP B
[−t,t]

.

This confirms that our identity subsumes the TFTs for entropy production of Crooks [3] and
Seifert [30]. Note that the above argument does not depend essentially on the coarse-graining
of the state space �, used here for simplicity, and that continuous system movements are fine
so long as the appropriate local detailed balance condition is satisfied.

We now consider the case of a nonconservative deterministic process, driven by a time-
dependent potential and/or external dissipative field, and possibly in contact with a Nosé–
Hoover or other deterministic thermostat, modulating fluctuations in momentum (see [31] for a
thorough discussion). The path space is taken to be a smooth submanifold of �[−t,t] consisting
of paths satisfying the thermostatted equations of motion, and the measures P[−t,t] and P B

[−t,t]

are induced directly from the initial distributions μ(·,−t) and μB(·, t), which are presumed
to possess densities f and f B, respectively, with respect to the underlying Lebesgue measure
on the manifold. The Evans–Searles dissipation function �(−t, t) [7] of the forward process,
while defined originally only for homogeneous processes, becomes in our inhomogeneous
setup

�(−t, t) = log
dP[−t,t]

dP B
[−t,t]

= log
dμ(X−t ,−t)

dμB(Xt , t)
= log

f (X−t ,−t)

f B(Xt , t)
+

∫ t

−t


(Xs, s) ds,

where 
(Xs, s) = −∂/∂Xs · Ẋs is the phase space compression factor. The first term on
the RHS is the change in system entropy 	S, and the second equals the net phase space
contraction over the trajectory, which, for many choices of thermostat [31], equals the outward
entropy flux βQ(−t, t). Note that this second equality is precisely the condition of local
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detailed balance for dynamical systems. By the second law, we may therefore again conclude
that SP = �P = S(−t, t).

The identification of SP with entropy production makes sense in two important respects.
First, in light of (11), for each sample path ω, SP (ω) represents the log-likelihood of observing
that path as time runs forward from −t to t rather than its reverse as time runs backward from
t to −t , vanishing precisely when P[−t,t] = P B

[−t,t]—that is, when there is no way to tell from
observing the process whether time is moving forward or backward. Note that SP vanishes
if and only if Feng and Crooks’ time asymmetry A = 1

2H
(
P[−t,t],

1
2

(
P[−t,t] + P B

[−t,t]

))
+

1
2H

(
P[−t,t],

1
2

(
P[−t,t] + P B

[−t,t]

))
[8], a proposed measure of time’s arrow, does. Second, the

expectation EP (SP ) = H
(
P[−t,t], P

B
[−t,t]

)
is nonnegative, consistent with the second law of

thermodynamics, and, as observed by Maes [22], is equal up to coarse-graining corrections to
the Gibbs entropy production of the process.

BC1 has an experimental connection to entropy production as well. Imagine that we
observe a large number of realizations of a process and wish to determine whether the process
is evolving forward or backward through time (i.e. whether the trajectories are being sampled
from the forward or backward path measure). For a simple homogeneous example, suppose
we observe the temperature profile of a slab of material evolve from a Gaussian of width σ1

at time −t to one of width σ2 < σ1 at time t. This is consistent with standard diffusion, but
under the backward, not forward, path measure governing the microscopic dynamics. To have
generated the observed trajectories, the ‘initial’ distribution μB(·, t) of the backward path
measure and the final distribution of the forward path measures must both equal the empirical
one generated by the states of the trajectories at time t, precisely the boundary condition BC1.

Having firmly established SP as the entropy production of the forward process under BC1,
the question remains whether its counterpart SP − (SQ in section 2) equals entropy production
under the backward process. While our TFT identity is valid for SP − generally, only when this
latter identification holds does our identity become a proper TFT for entropy production. In
fact, it was shown first by Crooks [3] and then at greater length by Harris and Schütz [11] that
the path functionals SP and SP − represent the same physical quantity under the forward and
backward path measures, respectively, only when the initial distributions μ(·,−t) and μB(·, t)
turn into each other under a time reversal of the protocol λ(·, s). This occurs most generally
when the initial distributions are solely the functions of the driving protocol, locally in time.
That is, there exists a function φ such that μ(x,−t) = φ(λ(x,−t)) and μB(x, t) = φ(λ(x, t)).
This includes the cases of equilibrium and nonequilibrium steady states, in which the protocol
λ(x, t) ≡ λ(x) is time independent. To be clear, when we refer to a TFT for entropy production
in this paper, we mean only the case when local detailed balance and BC1 are satisfied and a
protocol-to-distribution mapping φ exists.

Remark 3.1. In [28], Saha et al employ the techniques of van Zon and Cohen [34] to show
that for a Brownian particle in a harmonic potential and driven by an arbitrary time-dependent
force, the entropy production only satisfies the TFT

P[−t,t](	stot)

P[−t,t](−	stot)
= e	stot (14)

if the particle is initially in thermal equilibrium. This is indeed a surprising fact because,
based on our abstract results and the discussion above, one would never expect this TFT to
be satisfied, but rather the TFT (9), with Q = P −

[−t,t] and ϕ = r . The reason is that (14) fails
to distinguish between both the forward and backward path measures and the forward and
backward entropy productions, each of which are distinct due to the time-dependent driving.
In fact, as the authors acknowledge, (14) holds in the case of equilibrium initial conditions only

10
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because of a coincidental relationship between the form of the equilibrium Gibbs measure and
the harmonic potential. Any other potential or initial distribution—even an athermal Gibbs
distribution—causes (14) to break down. It is therefore important that no general relationship
between the validity of TFTs for entropy production and equilibrium initial conditions be
inferred from this study.

The situation is similar for another result proved by the authors, that the entropy
production of a Langevin system prepared initially in a nonequilibrium state and allowed
to relax to equilibrium without external driving does not satisfy the TFT (14). Even in the
absence of driving, the path measures P[−t,t] and P −

[−t,t] differ in their initial conditions—the
nonequilibrium and equilibrium states, respectively—and therefore (9) does not reduce to
(14). The entropy production of the system would therefore not be expected to satisfy (14).

3.3. Dissipated work and heat

We now change boundary conditions so that the quantity SP no longer equals the entropy
production of the forward process, but its dissipated work—that is, the entropy that flows from
the system to its surrounding reservoir as a result of work having been done on it. When
multiplied by the temperature of the reservoir, this entropy flux equals the difference between
the total work W(−t, t) done on the system + environment and the change in the Helmholtz
free energy of the system. Our new boundary conditions are

(BC2) μ(·,−t) = μ∗(·,−t) and μB(·, t) = μ∗(·, t), (15)

which, in a laboratory experiment, implies preparing the system initially at equilibrium with
respect to the Hamiltonian H(·,−t) and temperature β−1. From our previous discussion, BC2
immediately implies that SP and SQ represent the same physical quantity in their respective
processes. We further have that the boundary term for SP, replacing 	S, equals

log
μ∗(X−t ,−t)

μ∗(Xt , t)
= βH(Xt , t) − βH(X−t ,−t) + log Z(t) − log Z(−t)

= β	H − β	F,

with 	H the microscopic energy change and 	F the free energy difference between the
equilibrium distributions at times t and −t . Adding the current part βQ(−t, t), which is
justified by local detailed balance and (13),

log dP[−t,t]/dP B
[−t,t] = β(	H + Q(−t, t)) − β	F = βW(−t, t) − β	F,

where the RHS is precisely the dissipated work.
One might naturally assume that if the dissipated work βW(−t, t) − β	F of a system

initially prepared in equilibrium and satisfying both microscopic reversibility and local detailed
balance satisfies a TFT, then so would its dissipated heat βQ(−t, t) = βW(−t, t) − β	H .
In fact, it is the absence of the boundary term 	S = β	H − β	F in the latter variable that
makes this statement false in general [11, 30], particularly in the case of a driven Brownian
particle, as was observed by van Zon and Cohen [34]. In our generalized framework, writing
Q(0, t) for the heat dissipation of the forward process and QB(0, t) for the backward process,
the MGF symmetry (4) with BC1 implies that

EP

(
eλQ(−t,t)

(
μ(X−t ,−t)

μ(Xt , t)

)λ
)

= EP B

(
e−(1+λ)QB(−t,t)

(
μ(Xt , t)

μ(X−t ,−t)

)−(1+λ)
)

for −1 � Re(λ) � 0. Thus a TFT for heat dissipation holds only if the random variables
μ(X−t ,−t) and μ(Xt , t) are equal almost surely. But even in a nonequilibrium steady state in
which the distributions μ(·,−t) and μ(·, t) are equal this will not be true, of course, because

11
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the microscopic states X−t and Xt will in general differ. We therefore expect van Zon and
Cohen’s observation that the heat dissipation of a driven Brownian particle does not satisfy a
conventional TFT to hold for the great majority of processes.

Example 3.2 (Inhomogeneous Itò diffusions in Rd). This generalizes the case
of homogeneous diffusions [10, 15, 21, 33], but instead of studying their stationary
entropy production as is typically done, we consider their dissipated work due to time-
dependent driving. (For a more in-depth, technical exposition on fluctuation theorems for
multidimensional diffusions, see [2].) Let dXs = b(Xs, s)ds + σ(Xs, s)dBs denote the
stochastic differential of the forward process, whose drift vector b : Rd × [−t, t] → Rd equals
minus the gradient of a time-dependent potential H(x, s), to which the system is initially
equilibrated at time −t , and where σ : Rd × [−t, t] → Md×m(R), with Bs an m-dimensional
Brownian motion. The only assumptions we make are that b and σ are continuous in time and
satisfy the usual Lipschitz continuity requirements in space for a weakly unique solution [26].

The protocol-reversed differential associated with the forward differential is dYs =
b(Ys,−s)ds + σ(Ys,−s)dBs , with the initial condition μ−(·,−t) = μ∗(·, t) (i.e. BC2). This
in turn yields the backward process Zs = Y−s , whose quadratic variation process [Z]s is
identical to that of the forward process: letting P = {tj }0�j�n denote a partition of [−t, s],

[Z]s = lim
||P||→0

n∑
j=0

|Ztj+1 − Ztj |2 = lim
‖P‖→0

n∑
j=0

|Y−tj+1 − Y−tj |2

=
∫ t

−s

σ (·,−u)2 dBu =
∫ s

−t

σ (·, u)2 dBu = [X]s

The Girsanov theorem therefore guarantees the equivalence of P[−t,t] to a measure P ′
[−t,t] which

is identical to P B
[−t,t] except having an initial distribution μ(·,−t). But dP ′

[−t,t]

/
dP B

[−t,t](ω)

then equals μ(X−t (ω),−t)/μ∗(Xt (ω), t), which is finite by the positivity of Gibbs measures,
and so we conclude P[−t,t] ∼ P ′

[−t,t] ∼ P B
[−t,t]. This confirms that the dissipative work satisfies

a TFT.
Note that the forward path measure will not in general be equivalent to either the protocol-

reversed or path-reversed path measures, as it is in the homogeneous diffusion case, because
their corresponding quadratic variation processes do not coincide. This implies that the usual
TFT P(Wd = z)/P (Wd = −z) = ez for dissipated work will not hold.

3.4. Tautological interpretation of transient fluctuation theorems

Consider equation (9), which is the distributional form of the TFT identity for virtually all
processes of relevance in physics—those whose thermodynamic variables have a discrete or
continuous distribution. With the identifications P ≡ P[−t,t], Q ≡ P −

[−t,t] and ϕ ≡ r made in
section 3.1, and using lemma 2.1,

Q(SQ(ω) = −x) = P −
[−t,t]

(
log

dP −
[−t,t]

d(rP[−t,t])
(ω) = −x

)

= P −
[−t,t]

(
log

d(rP[−t,t])

dP −
[−t,t]

(ω) = x

)

= P −
[−t,t]

(
log

dP[−t,t]

dP B
[−t,t]

(rω) = x

)

= P B
[−t,t]

(
log

dP[−t,t]

dP B
[−t,t]

(ω) = x

)
.

12
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implying that (9) can be re-expressed as

P[−t,t]

(
log

dP[−t,t]

dP B
[−t,t])

(ω) = x

)
= exP B

[−t,t]

(
log

dP[−t,t]

dP B
[−t,t]

(ω) = x

)
.

Recalling the discussion in section 3.2, this equation states the following tautology: ‘Spacetime
curves that are ex times more likely to be realized in a forward-time universe than a
backward-time universe (i.e. {ω ∈ � : log dP[−t,t]/dP B

[−t,t](ω) = x}) are ex times more
likely to be realized in a forward-time universe than a backward-time universe’. The TFT
identity, and hence the thermodynamic TFTs it generalizes, are therefore simply mathematical
representations of a self-evident statement. This is true in particular for the case of
homogeneous processes, in which P −

[−t,t] = P[−t,t] (modulo boundary terms) and the familiar
TFT

P[−t,t]

(
log

dP[−t,t]

d(rP[−t,t])
(ω) = x

)
= exP[−t,t]

(
log

dP[−t,t]

d(rP[−t,t])
(ω) = −x

)

= exrP[−t,t]

(
log

dP[−t,t]

d(rP[−t,t])
(ω) = x

)
has the interpretation that ‘trajectories that are ex more likely to be observed than their time
reversals are ex more likely to be observed than their time reversals’.

If one is to ascribe nontrivial content to TFTs, therefore, it cannot be to the theorems
themselves, which are ‘obvious’, but to the fact that the thermodynamic variable in question can
be represented as a logarithmic Radon–Nikodym derivative. This, after all, is the distinction
between the entropy and dissipated work of a process and its dissipated heat, with only the
former two satisfying a TFT in general.

4. Domain of convergence of the MGF and breakdown of AFTs

4.1. Definition and breakdown of AFTs

It was proved in section 2 that the MGF of entropy production in the forward process,
EP (eλS(0,t)), is only guaranteed to converge for −1 � Re(λ) � 0, a fact missed by previous
studies. The significance of this fact is that processes for which this function does not converge
in a neighborhood of the origin cannot satisfy an AFT. To see this, recall that the entropy
production of a homogeneous process (Xt )t�0 (i.e. one that is driven time-independently)
satisfies an AFT with speed ϕ(t) when the quantity S(−t, t)/ϕ(t) satisfies a large deviation
principle (LDP) with speed ϕ(t) [32], whose corresponding rate function I (z) satisfies the
Gallavotti–Cohen symmetry I (z)−I (−z) = −z. Here ϕ(t) is some monotonically increasing
continuous function satisfying ϕ(t) → ∞ as t → ∞, and I (z) is a nonnegative, lower semi-
continuous function such that for all intervals A ⊂ R,

lim
t→∞

1

ϕ(t)
log P(Xt ∈ A) = − inf

z∈A
I (z).

The Gallavotti–Cohen symmetry is the infinite time analogue of (9), which held only for the
finite time distribution of entropy production. Just as the rate function generalizes the finite
time distribution of S(−t, t), the free energy

c(λ) = lim
t→∞

1

ϕ(t)
log EP (eλS(−t,t))

generalizes its MGF. It is in the relationship between the rate function and free energy that the
domain of the MGF becomes relevant.
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By Varadhan’s theorem [35], the Legendre–Fenchel transform of I (z) yields c(λ). This
implies that if the MGF of S(−t, t) does not exist in a neighborhood of the origin for large t,
then the free energy does not exist there either for any choice of ϕ, meaning that I (z) is not
defined in a neighborhood of its minimum z∗, which would otherwise be the almost sure limit
of S(−t, t)/ϕ(t). (When c(λ) is differentiable at 0, z∗ = c′(0) and the time-averaged entropy
production converges exponentially to this value [13].) As it is precisely the existence of the
rate function in a neighborhood of z∗ that guarantees almost sure convergence to this value
(i.e. the strong law of large numbers) as well as the distribution of fluctuations about it [32],
this scenario corresponds to a breakdown in the LDP, and hence the AFT.

In fact, even though it has been shown that the heat dissipation Q(−t, t) of a process does
not in general satisfy a TFT, the argument above holds for it as well. In this case, the failure
of the MGF of Q(−t, t) to exist in a neighborhood of λ = 0 results in the breakdown of an
AFT for the time-averaged heat dissipation and, hence, the time-averaged entropy production
(due to the finiteness of the boundary term 	S), despite the fact that the latter satisfies a TFT
over arbitrary timescales. We consider this situation in the detailed example below.

4.2. Example: strongly biased birth–death chains

4.2.1. The model. To illustrate how the divergence of the MGF for heat dissipation can come
about, we consider the example of a continuous-time birth–death chain Xt on the nonnegative
integers j � 0, representing the dynamics of a population. The chain hops from site j to j + 1
with rate pj and left to j − 1 with rate qj, corresponding to a birth or death in the population,
respectively. For later simplicity, we define the process only on the time interval [0,∞), with
X0 ≡ 0, so that the reversal of the path segment ω|[0,t] ∈ D(0, t) is r(ω)s = lims ′↑t−s ωs ′ ,
which preserves path right-continuity. None of our results are affected by defining the process
on the halfline instead of all of R. We further take pj + qj = 1 so that the mean holding time
at every site is 1 second, and restrict the argument λ of the MGF to the real axis, since the free
energy, at least as it is employed in large deviation theory, is defined only on the reals. Note
that the former constraint implies that the process makes only a finite number of hops almost
surely in a finite time interval, so as long as we take pj > 0 for j � 0 and qj > 0 for j � 1,
the forward and backward path measures restricted to that interval will be equivalent.

Following Lebowitz and Spohn and our discussion in section 3, Q(0, t) is incremented by
log pj/qj+1 every time the particle hops right from j and log qj/pj−1 every time it hops left.
The rate in the denominator refers to the corresponding reversed movement in the backward
process. That Q(0, t) only depends on the final state Xt can be seen by noting that of the Nt

hops made until time t, exactly (Nt − Xt)/2 rightward ones from j to j + 1 are compensated
by leftward ones from j + 1 to j , whose contributions to Q(0, t) cancel. What remains are
contributions made from rightward hops at the first Xt sites, so that

Q(0, t) = log
Xt−1∏
j=0

pj

qj+1
. (16)

The MGF for Q(0, t) can therefore be written as

MQ(λ, t) ≡ EP (eλQ(0,t))

=
∞∑

n=0

P(Nt = n)

n∑
k=1

P(Xt = k|Nt = n)

⎛
⎝k−1∏

j=0

pj

qj+1

⎞
⎠

λ

+ C0, (17)
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where C0 represents the contribution from the k = 0 term in the inner sum, which is independent
of λ and t. As this constant factor does not affect any of our results for the free energy, which
only depends on derivatives and scaled limits of MQ(λ, t), we omit it from future calculations.

We consider two choices for the rates pj , qj , each of which biases the chain toward the
right. The first choice, pj/qj = α > 1, we will show, results in a convergent MGF about
the origin and a valid AFT for Q(0, t) for all t � 0. It is a simple illustration that AFTs
can apply to processes that not only do not possess a limiting stationary distribution (whether
strict, periodic or quasistationary), but are non-recurrent. This is also a special case of the AFT
proved in [12] for non-Markovian simple random walks. For the stronger bias pj/qj = 2j ,
on the other hand, we show that the MGF fails to exist for λ > 0 and so no LDP is satisfied
for any choice of ϕ(t). In essence, what fuels the breakdown in this case is that the typical
irreversibility of trajectories consisting of arbitrarily large numbers of hops, represented, via
(16), by their heat dissipation, dwarfs their improbability under P.

4.2.2. Constant bias. We begin with the case pj/qj = α > 1 for j � 1, with the
boundary condition p0 = 1 and q0 = 0. These rates might correspond to a population of cells
whose common division rate is α times greater than their common death rate. The constraint
pj +qj = 1 corresponds to slowing down the dynamics for larger populations, an effect which
does not alter our analysis as all waiting times have canceled in the definition of Q(0, t). In
light of the constraint pj + qj = 1, we have pj = α/(α + 1) and qj = 1/(α + 1), implying by
(16) that Q(0, t) = log[αXt−1(α + 1)] for Xt � 1 and Q(0, t) = 0 for Xt = 0.

To prove a LDP, we show that the free energy

cQ(λ) = lim
t→∞

1

t
log MQ(λ, t) (18)

exists and is differentiable, indicating a simple linear speed for the LDP. We begin by bounding
|MQ(λ, t)| = MQ(λ, t) above and below by exponentials in t (with prefactors) to confirm that
the speed ϕ(t) = t . Using the fact that Nt is Poisson with intensity t, our upper bound is

MQ(λ, t) =
∞∑

n=0

e−t tn

n!

n∑
k=1

P(Xt = k|Nt = n)(αk−1(α + 1))λ

< e−t

∞∑
n=0

tn

(n − 1)!
(α + 1)λn

= t (α + 1)λ exp[−t + t (α + 1)λ], (19)

so that

lim sup
t→∞

1

t
log MQ(λ, t) < (α + 1)λ − 1. (20)

Keeping only the k = n terms in (19) and noting that

P(Xt = n|Nt = n) =
n−1∏
j=0

pj

pj + qj

=
(

α

α + 1

)n−1

, (21)

we have the lower bound

MQ(λ, t) >

∞∑
n=0

e−t tn

n!

(
α

α + 1

)n−1

αλn = α + 1

α
e−t

∞∑
n=0

1

n!

(
tα1+λ

α + 1

)n

= α + 1

α
exp

[
t

(
α1+λ

α + 1
− 1

)]
,
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implying that

lim inf
t→∞

1

t
log MQ(λ, t) >

α1+λ

α + 1
− 1 � −1, (22)

uniformly in λ.
Together, (20) and (22) verify that if the limit (18) exists, the speed ϕ(t) must equal t. We

establish this limit by proving that 1
t

log MQ(λ, t) is monotonically increasing in t for large
t, and therefore converges to a finite value, bounded above by the lim sup (20). To this end,
define M1

Q(λ, t) to be the MGF of Q(0, t) with respect to the process which begins at site 1
instead of 0. It is easy to show that MQ(λ, t) satisfies the backward equation

∂

∂t
MQ(λ, t) = p0 eλ log p0

q1 M1
Q(λ, t) − MQ(λ, t) = (α + 1)λM1

Q(λ, t) − MQ(λ, t).

Since MQ(λ, t) and M1
Q(λ, t) can differ ∀t at most by (1 + α)λ, corresponding to the heat

released by an immediate jump from 0 to 1 at t = 0, and both grow to infinity as t → ∞,

∂

∂t
log MQ(λ, t) = (α + 1)λ − 1 + o(1),

where the o(1) term vanishes in this limit. But by the strict inequality in (20), there exists an
ε > 0 such that log MQ(λ, t) � t ((α + 1)λ − 1 − ε) for large t. This implies that

∂

∂t

[
1

t
log MQ(λ, t)

]
� 1

t2
(t ((α + 1)λ − 1 + o(1)) − t ((α + 1)λ − 1 − ε

)
) = ε + o(1)

t
,

which is nonnegative for large t—exactly what was required.
Having established convergence of the free energy ∀λ ∈ R, we now turn to its

differentiability. As cQ(λ) is convex and differential operators commute with limits of convex
functions, upon taking a derivative of (18), we may pass the operator through the limit and
ultimately to the MGF inside. The derivative of this infinite sum is then evaluated term-wise,
which is justified once it is clear that the resulting sum converges absolutely and uniformly on
compact sets:∣∣∣∣ ∂

∂λ
MQ(λ, t)

∣∣∣∣ =
∣∣∣∣∣e−t

∞∑
n=0

tn

n!

n∑
k=1

P(Xt = k|Nt = n)(αk−1(α + 1))λ log(αk−1(α + 1))

∣∣∣∣∣
� e−t

∞∑
n=0

[t (α + 1)λ]n

(n − 1)!
· n log(α + 1).

Local uniform convergence clearly holds (by the ratio test, for instance), and so we may
conclude that the free energy cQ(λ) is differentiable.

4.2.3. Strong bias. Having proved a LDP and associated AFT for the constant bias case, we
now show that for the exponentially biased rates pj/qj = 2j , no LDP is possible for any choice
of speed ϕ(t). This is a somewhat surprising result, since one might suspect that no matter
how fast heat is dissipated by a process, there exists a time scaling under which the distribution
of its fluctuations has a weak limit, analogous to a central limit theorem. Interestingly, the
MGF exists and a LDP is satisfied even for the linearly increasing bias pj/qj = j , although
there is no simple representation of the LDP speed for these rates.

In the present case, the rates can be solved as pj = 2j /(2j + 1) and qj = 1/(2j + 1)

(again, with p0 = 1 and q0 = 0), whose associated heat dissipation by time t is

Q(0, t) = log(2Xt + 1)

Xt−1∏
j=1

2j .
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Keeping only the k = n term in its definition (17) and recalling the first equality in (21), we
obtain the following inequality for MQ(λ, t):

MQ(λ, t) =
∞∑

n=0

e−t tn

n!

n∑
k=1

P(Xt = k|Nt = n)

⎛
⎝(2k + 1)

k−1∏
j=1

2j

⎞
⎠

λ

�
∞∑

n=0

e−t tn

(
n∏

k=1

2k

2k + 1

)
n∏

j=1

2λj

j
. (23)

Defining η ≡ ∏∞
k=0

2k

2k+1 > 0,

| log η| =
∣∣∣∣

∞∑
k=0

log

(
1 − 1

2k + 1

)∣∣∣∣=
∣∣∣∣

∞∑
k=0

[
− 1

2k + 1
+

C

2!

1

(2k + 1)2

]∣∣∣∣< ∞,

where C is the appropriate coefficient in the exact second-order Taylor expansion of log(x).
We therefore see that η is finite, and so MQ(λ, t) � e−t

∑∞
n=0 tnan(λ), where the sequence

an(λ) ∼ η
∏n

j=1 2λj /j tends to infinity ∀ λ > 0. Therefore MQ(λ, t) diverges ∀t > 0 for
λ > 0, and we are done.

As we remarked earlier and can be seen in (23), the divergence of the MGF in the strong
bias case comes from the domination of the exponential heat dissipation term

∏n
j=1 2λj over

the 1/n! term that weights the probability of a trajectory with n hops by time t. Physically,
this means that the typical heat dissipation associated with the tail event in which the system
hops a large number of times over a finite time interval dwarfs the improbability of that event,
leading to the divergence of all of its moments.

5. Conclusion

The abstract results of this paper imply several consequences for the interpretation of TFTs.
First and foremost, the mathematical identity underlying TFTs, represented in its distributional
form by the fluctuation symmetry (9), is a very general one. As demonstrated in theorems 2.2
and 2.3, it holds for logarithmic Radon–Nikodym derivatives between processes that need
not have any relation to each other other than to put positive probability on the same set of
paths—hence the example in the introduction. In particular, the fluctuation symmetry does
not require the processes to be related by a protocol, trajectory or field reversal, or any other
self-inverse ‘reversal’ transformation employed in physics derivations of TFTs, in order to
hold.

The generality of the fluctuation symmetry can even be taken a step further. While the
fluctuation symmetry does not hold in general for the heat dissipated by a process, which cannot
be represented as a logarithmic derivative, in the case of entropy production and dissipated
work the symmetry merely expresses a self-evident statement in terms of the arrow of time.
If one is to ascribe meaning to TFTs for these quantities, and therefore to the second law of
thermodynamics which they imply as a consequence, it must be to the representation of the
two thermodynamic variables as logarithmic derivatives. This puts a very different face on
Loschmidt’s paradox, which has always been cast as a dynamics problem, rather than one of
mathematical representation.

Another result that comes out of theorem 2.2 is that the MGFs of the thermodynamic
variables appearing in the MGF form of the identity are not guaranteed to exist in an open
neighborhood of the origin. As the detailed example of strongly biased birth–death chains
demonstrated, this can lead to a breakdown in the LDP of the thermodynamic variable in
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question under every possible time-scaling, and hence a breakdown of the associated AFT.
The implication is that the fluctuations of a variable may satisfy a TFT over arbitrarily large
timescales, but the fluctuations of its time-average would not satisfy an AFT.
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[22] Maes C and Netočný K 2003 Time-reversal and entropy J. Stat. Phys. 110 269–310
[23] Maes C 2004 Fluctuation relations and positivity of the entropy production in irreversible dynamical systems

Nonlinearity 17 1305–16
[24] Maes C and van Wieren M H 2006 Time-symmetric fluctuations in nonequilibrium systems Phys. Rev.

Lett. 96 240601
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